首页> 外文OA文献 >Wave theories of non-laminar charged particle beams: from quantum to thermal regime
【2h】

Wave theories of non-laminar charged particle beams: from quantum to thermal regime

机译:非层流带电粒子束的波动理论:从量子到热态

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The standard classical description of non-laminar charged particle beams in paraxial approximation is extended to the context of two wave theories. The first theory that we discuss (Fedele R. and Shukla, P. K. 1992 Phys. Rev. A 45, 4045. Tanjia, F. et al. 2011 Proceedings of the 38th EPS Conference on Plasma Physics, Vol. 35G. Strasbourg, France: European Physical Society) is based on the Thermal Wave Model (TWM) (Fedele, R. and Miele, G. 1991 Nuovo Cim. D 13, 1527.) that interprets the paraxial thermal spreading of beam particles as the analog of quantum diffraction. The other theory is based on a recently developed model (Fedele, R. et al. 2012a Phys. Plasmas 19, 102106; Fedele, R. et al. 2012b AIP Conf. Proc. 1421, 212), hereafter called Quantum Wave Model (QWM), that takes into account the individual quantum nature of single beam particle (uncertainty principle and spin) and provides collective description of beam transport in the presence of quantum paraxial diffraction. Both in quantum and quantum-like regimes, the beam transport is governed by a 2D non-local Schrödinger equation, with self-interaction coming from the nonlinear charge-and current-densities. An envelope equation of the Ermakov-Pinney type, which includes collective effects, is derived for both TWM and QWM regimes. In TWM, such description recovers the well-known Sacherer's equation (Sacherer, F. J. 1971 IEEE Trans. Nucl. Sci. NS-18, 1105). Conversely, in the quantum regime and in Hartree's mean field approximation, one recovers the evolution equation for a single-particle spot size, i.e. for a single quantum ray spot in the transverse plane (Compton regime). We demonstrate that such quantum evolution equation contains the same information as the evolution equation for the beam spot size that describes the beam as a whole. This is done heuristically by defining the lowest QWM state accessible by a system of non-overlapping fermions. The latter are associated with temperature values that are sufficiently low to make the single-particle quantum effects visible on the beam scale, but sufficiently high to make the overlapping of the single-particle wave functions negligible. This lowest QWM state constitutes the border between the fundamental single-particle Compton regime and the collective quantum and thermal regimes at larger (nano-to micro-) scales. Comparing it with the beam parameters in the existing accelerators, we find that it is feasible to achieve nano-sized beams in advanced compact machines.
机译:近轴非层状带电粒子束的标准经典描述扩展到两种波理论的背景。我们讨论的第一个理论(Fedele R.和Shukla,PK 1992 Phys。Rev. A 45,4045。Tanjia,F.等人,2011年,第38届EPS等离子体物理会议论文集,第35G卷,法国斯特拉斯堡:欧洲物理学会)基于热波模型(TWM)(Fedele,R.和Miele,G.1991 Nuovo Cim.D 13,1527.)将光束粒子的近轴热扩散解释为量子衍射的类似物。另一种理论基于最近开发的模型(Fedele,R.等人2012a Phys。Plasmas 19,102106; Fedele,R.等人2012b AIP Conf。Proc。1421,212),以下称为量子波模型( (QWM),它考虑到了单光束粒子的单个量子性质(不确定性原理和自旋),并提供了在存在量子傍轴衍射的情况下光束传输的集体描述。在量子态和类量子态中,束流传输均受二维非局部薛定ding方程控制,其自相互作用来自非线性电荷和电流密度。对于TWM和QWM体制,都推导了包括集体效应在内的Ermakov-Pinney类型的包络方程。在TWM中,这种描述恢复了众所周知的Sacherer方程(Sacherer,F。J. 1971 IEEE Trans。Nucl。Sci。NS-18,1105)。相反,在量子状态和哈特里(Hartree)的平均场近似中,人们恢复了单个粒子光斑尺寸(即横向平面中单个量子射线光斑)的演化方程(康普顿状态)。我们证明了这样的量子演化方程包含与描述束整体的束斑尺寸的演化方程相同的信息。通过定义非重叠费米子系统可访问的最低QWM状态,可通过启发式方式完成此操作。后者与温度值相关,该温度值足够低以使单粒子量子效应在光束范围内可见,而温度又足够高以使得单粒子波函数的重叠可忽略不计。最低的QWM状态构成了基本单粒子康普顿态与较大(纳米到微米)尺度的集体量子和热态之间的边界。将其与现有加速器中的光束参数进行比较,我们发现在先进的紧凑型机器中实现纳米尺寸的光束是可行的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号